Modèle de Moran
Modèle de
Coalescent dans lequel la taille de la population reste fixée à \(n\).
- des changements dans la population arrivent aux instants d'un Processus de Poisson
homogène à taux \(\frac{n(n-1)}2\) (quitte à changer l'échelle du temps)
- lors d'un changement, un individu pris au hasard se reproduit, et un autre choisi indépendamment dans les \(n-1\) restants meurt
- c'est donc un modèle de Coalescent, puisque toute paire de lignées fusionne avec un taux \(1\), et aucune autre transition n'est possible